

HEALTH SYSTEM We also treat the human spirit.*

Clinical Implementation of SRS/SBRT

Anil Sethi, PhD, FAAPM Loyola University Medical Center November 4, 2017

Disclosures

LOYOLA UNIVERSITY HEALTH SYSTEM

Speaker: BrainLAB Standard Imaging Research collaboration: RaySearch

Learning Objectives

- Physics Considerations
- SRS Program
- SBRT Program

Physics Considerations

LOYOLA UNIVERSITY

- Equipment Selection
- System QA (Image, Plan and Treat)
- Beam Data Measurement
- Data Validation
- End-to-End Test (Process QA)
- Tips and Tricks

System QA

- Winston-Lutz Test
- Process QA
- Image-Fusion Test

Output/PDD/Profiles

- Beam Output Check: TG-51
- Send for IROC TLDs
- Beam Scans (PDD/Profiles) for MLC & cones
- Scatter(output) factors

Small Field Challenge: Output Factors

LOYOLA UNIVERSITY HEALTH SYSTEM

Das et al.

Large vs. Small Fields

If Wrong Detector....

Which Detector to Use?

- Ensure detector size < (¼ * Field Size)</p>
- Small ion chamber (<0.1cc): stem effect/leakage.</p>
- Medium ion chamber (0.1 1.0 cc): volume averaging
 CA is under-dosed, penumbra broadened
- Recommend:
 - <u>Unshielded diode for small fields</u> and
 - Ion chamber for large fields

SRS Detectors

- CC13 (0.13cc active volume)
- A16
- Exradin D1H and D1V
- IBA SFD

- Edge detector
- PTW White diode (60018)

LOYOLA UNIVERSITY HEALTH SYSTEM

Beam Data Measurement:

Avoid Pitfalls

Beam Misalignment

A MEMBER OF 🎊 TRINITY HEALTH

Beam Misalignment

LOYOLA UNIVERSITY HEALTH SYSTEM

A MEMBER OF 🎊 TRINITY HEALTH

SAM_Q1

In the measurement of very small fields (< 1x1 cm), variation in output factors caused by wrong detector and/or incorrect setup can be no more than

- A. <2%
- **B.** 2 5%
- **C.** 5 10%
- D. 10% +

E. There is no problem if you will use the smallest detector available.

SAM_Q1

In the measurement of very small fields (< 1x1 cm), variation in output factors caused by wrong detector and/or incorrect setup can be

- A. <2%
- **B.** 2 5%
- <u>C. 5 10%</u>
- D. 10% +

E. There is no problem if you will use the smallest detector available.

Reference: Das et al, Task Group 106, Med Phys 35, 4186 (2008). Francescon et al MP (2011).

Beam Data Measurement Tips

- Check water surface (use d_{max} as reference)
- Correct for Effective point of measurement
- Align scanning system/ detectors with beam axis. Drive Up!
- Scan small field profile (< 2 cm) to verify detector centering & depth correction if needed
- Repeat with MLC and cones

Measurement Tips

- Verify 10x10 cm PDD/profiles
- Output factors with at-least two diode detectors + small volume ion chamber
- Apply correction factors (*Francescon et al, MP 2011*)
- Perform cross calibration before each measurement
- Daisy chain at ~4x4 cm: Perform measurements with large chamber for known MU and then deliver same MU to the small detector. Use charge ratio of output for large detector to adjust output with small detector.

More Tips

LOYOLA UNIVERSITY HEALTH SYSTEM

- For small fields, No ref detector
- Slow scan speed, 20+ points/meas.
- Watch for Penumbra asymmetry
- Check leakage and
- Subtract from Output if necessary

Detector Compare

Depth (mm)

Detector Compare

UNIVERSITY **HEALTH SYSTEM**

A MEMBER OF 💸 TRINITY HEALTH

Detector Compare 30 x 30 mm PDD

A MEMBER OF 🎊 TRINITY HEALTH

Off-axis distance (mm)

Detector Compare

Penumbra Measurements

F.S. (mm)	\longrightarrow	100 x 100	30 x30	12x 12	6x6
Detector	Vendor				
CC13	IBA	5.2	4.9	4.7	3.8
A16	Std Imaging	3.8	3.3	3.1	2.4
Edge	Sun Nuclear	3.2	2.6	2.2	2.1
D1V	Std Imaging	3.0	2.3	2.2	2.1
D1H	Std Imaging	3.0	2.3	2.3	1.9
PFD	IBA	3.5	2.5	2.5	2.3
SFD	IBA	3.1	2.4	2.3	2.0
TN 60018	PTW	3	2.2	2.3	2.1

Field size (mm)

Detector size impacts all of the following SRS measurements **except**:

A. Output factors
B. PDD
C.Beam Profile
D.MU calculations
E. FWHM

Detector size impacts all of the following SRS measurements except:

- A. Output factors B. PDD
- C.Beam Profile
- C.Dealli Fiulle
- D.MU calculations

E. FWHM

Reference: Das et al, Task Group 106, Med Phys 35, 4186 (2008).

TPS Validation

- Independent MU to Dose Calc.
- TG-119 (Planar Array/ ion-chamber/film)
- MU vs. Measurement for MLC and Cone plans
- Heterogeneity Correction vs. Field size
- Verify Dose/MU for select fields
- RPC/RTOG credentialing

Image Fusion QA: CT/MR

LOYOLA UNIVERSITY HEALTH SYSTEM

Results:

CT/CT : 0.48 ± 0.07 mm

CT/MR : 1.09 ± 0.65 mm

HTT for SRS/SBRT

LOYOLA UNIVERSITY HEALTH SYSTEM

Position: 1.14 mm

Dose: < 2%

SAM_Q3

Good practice recommendation to ensure accuracy of small field output factors measured in your clinic is to use

- A. One Ion Chamber
- B. Any one ion chamber + one diode
- C. Two ion chambers + one diode
- D. One ion chamber + two diodes
- E. Trust your instincts!

SAM_Q3

Good practice recommendation to ensure accuracy of small field output factors measured in your clinic is to use

- A. One Ion Chamber
- B. Any one ion chamber + one diode
- C. Two ion chambers + one diode
- D. One ion chamber + two diodes
- E. Trust your instincts!

Reference: Das et al, Task Group 106, Med Phys 35, 4186 (2008).

Summary

- Select appropriate set of detectors for small fields
- Ensure positioning and alignment with respect to central axis
- **Redundancy** of measurements
- Cross check with standard data
- RTP commissioning/verification: for typical treatment fields
- System QA: Imaging/TPS/Linac

LOYOLA UNIVERSITY HEALTH SYSTEM

SRS Treatment Planning

A MEMBER OF 🎊 TRINITY HEALTH

SRS Rx Dose

- Target Volume, Type, and Location
- SRS Rx dose (RTOG 95-08) max

tolerable vs. GTV diameter:

- < 2cm: 24 Gy
- 2.1 3cm: 18 Gy
- 3.1 4cm: 15Gy
- Mets/AVM typically treated with SRS
- Malignant lesions with SRT

LOYOLA UNIVERSITY HEALTH SYSTEM

SRS Treatment Planning

LOYOLA UNIVERSITY HEALTH SYSTEM

- Follow RTOG guidelines (www.rtog.org)
- Use DVHs to get
 - target Rx Dose or D_{min}
- Volume of healthy tissue irradiated
 - Conformality index
- Target dose homogeneity (max/min target dose)
 - homogeneity index
- SRS dose homogeneity is <u>relaxed</u> in favor of dose Conformality

SRS Treatment Planning

- Draw separate GTVs on CT & MR
 - PTV = GTV (SRS)
 - PTV = GTV + 2mm (SRT)
- Use composite GTV (CT + MR) for planning
- OARs (auto segmentation but verify)

SRS Treatment Planning

- Target size,
- location,
- proximity to OARs
- dose fractionation.
- 3-4 VMAT Arcs
- Can also use conformal fixed fields or circular arcs

Dose constraints

Structure	Dose (Gy)	Endpoint
Optic chiasm	10	Neuritis
Cochlea	12	Hearing loss
Brainstem	15	Cranial neuropathy
Cord	14	Myelitis

Optic, auditory< trigeminal <motor CN

Ref.: QUANTEC (Red J. 2010); Mayo, (Red J. 2009); SBRT TG101(Med Phys 2010)

SRS Plan Evaluation

- Draw "Irradiated_OARs" for long structures such as cord, brain stem for accuracy.
- Examine DVHs, Rx Isodose coverage, and OAR sparing
- Conformality index (V100/PTV)
- Homogeneity index (D5/D95)

Case 1: Brain Met DVH

Case 2: Rt Occipital Met

4 VMAT arcs, 4 table angles, 18Gy, single fraction

Tips: Conformity Index *vs.* **Target size**

SBRT Planning

4DCT Scanning

- Free breathing (FB) scan
 - 3x3mm slices
- 4D scan with Varian's RPM
 - ROI: (±5 cm around PTV)
 - 2-3 mm slice width.
- Create MIP (maximum intensity projection) data set.
- Transfer FB images & 4D sets (0%, 50%, MIP & Ave. Int. projection) to TPS

Image Fusion

SBRT OARs

- Rt + Lt lung (pulmonary window)
- Heart, Trachea, Carina

- Esophagus_irrad. (± 3cm sup/inf around PTV)
- Spinal cord_irrad. (± 3cm sup/inf around PTV)
- Liver, kidneys, Small bowel, Pancreas
- *Do not include GTV/PTV in lung definition

SBRT Targets

- GTV on FB, 0%, 50% CT sets; ITV on MIP
- PTV = ITV + 3 5mm
- Create D2cm = PTV + 2cm (high dose spillage)

SBRT Dose Rx.

Loyola:

- For lung patients:
 - 10 12Gy/fx x 5 fractions = 50-60Gy BED ~ 100-150 Gy
 - **M-W-F treatments**

SBRT Treatment Planning

- 6 10 MV X-rays,
- VMAT: 3 4 VMAT non-coplanar arcs or
- 3DCRT: 8 12 non-coplanar, non-opposing fields.

SBRT Plan Evaluation

- Target Coverage: 95% of PTV and 100% of GTV
- Hot spot must be less than ~10-15% & within PTV.
- Target Dose Homogeneity : < 15-20%</p>
- Dose spillage: V50/PTV (see RTOG table)

SBRT Plan Evaluation

- <u>Dose Conformality</u>: V100/PTV = 1.2 1.5 (higher values for smaller targets)
- Tighten up PTV MLC margin or adjust beam parameters to achieve better Conformality index (CI).
- Ensure small calc. grid (1mm) for small structures.

SBRT Plan Evaluation

Table 1: Conformality of Prescribed Dose for Calculations Based on Deposition of Photon Beam Energy in Heterogeneous Tissue

PTV Volume	Ratio of Prescription		Ratio of 50% Prescription		Maximum Dose (in % of dose prescribed) @		Percent of Lung Receiving 20 Gy		
(00)	Isodose Volume		Isodose Volume		2 cm from PTV in Any		Total or More,		
	to the PTV		to the PTV		Direction, D _{2cm} (Gy)		V ₂₀ (%)		
	Volu	Volume		Volume, R _{50%}					
	Deviation		Deviation		Deviation		Deviation		
	None	Minor	None	Minor	None	Minor	None	Minor	
1.8	<1.2	<1.5	<5.9	<7.5	<50.0	<57.0	<10	<15	
3.8	<1.2	.<1.5	<5.5	<6.5	<50.0	<57.0	<10	<15	
7.4	<1.2	<1.5	<5.1	<6.0	<50.0	<58.0	<10	<15	
13.2	<1.2	<1.5	<4.7	<5.8	<50.0	<58.0	<10	<15	
22.0	<1.2	<1.5	<4.5	<5.5	<54.0	<63.0	<10	<15	
34.0	<1.2	<1.5	<4.3	<5.3	<58.0	<68.0	<10	<15	
50.0	<1.2	<1.5	<4.0	<5.0	<62.0	<77.0	<10	<15	
70.0	<1.2	<1.5	<3.5	<4.8	<66.0	<86.0	<10	<15	
95.0	<1.2	<1.5	<3.3	<4.4	<70.0	<89.0	<10	<15	
126.0	<1.2	<1.5	<3.1	<4.0	<73.0	>91.0	<10	<15	
163.0	<1.2	<1.5	<2.9	<3.7	<77.0	>94.0	<10	<15	

From: RTOG 0813 / 0915 / 0236

OAR Dose Constraints

Serial Tissue	Volume (mL)	Volume Max (Gy)	Max Point Dose (Gy)	Endpoint (≥Grade 3)			
FIVE-FRACTION TREATMENT							
Optic pathway	<0.2	20 (4 Gy/fx)	25 (5 Gy/fx)	Neuritis			
Cochlea			27.5 (5.5 Gy/fx)	Hearing loss			
Brainstem	<1	26 (5.2 Gy/fx)	31 (6.2 Gy/fx)	Cranial neuropathy			
Spinal cord	<0.25	22.5 (4.5 Gy/fx)	30 (6 Gy/fx)	Myelitis			
	<1.2	13.5 (2.7 Gy/fx)					
Cauda equina	<5	30 (6 Gy/fx)	34 (6.4 Gy/fx)	Neuritis			
Sacral plexus	<3	30 (6 Gy/fx)	32 (6.4 Gy/fx)	Neuropathy			
Esophagus*	<5	27.5 (5.5 Gy/fx)	35 (7 Gy/fx)	Stenosis/fistula			
lpsilateral brachial plexus	<3	30 (6 Gy/fx)	32 (6.4 Gy/fx)	Neuropathy			
Heart/pericardium	<15	32 (6.4 Gy/fx)	38 (7.6 Gy/fx)	Pericarditis			
Great vessels	<10	47 (9.4 Gy/fx)	53 (10.6 Gy/fx)	Aneurysm			
Trachea and ipsilateral bronchu	s* <4	18 (3.6 Gy/fx)	38 (7.6 Gy/fx)	Stenosis/fistula			
Skin	<10	30 (6 Gy/fx)	32 (6.4 Gy/fx)	Ulceration			
Stomach	<10	28 (5.6 Gy/fx)	32 (6.4 Gy/fx)	Ulceration/fistula			
Duodenum*	<5	18 (3.6 Gy/fx)	32 (6.4 Gy/fx)	Ulceration			
Jejunum/ileum*	<5	19.5 (3.9 Gy/fx)	35 (7 Gy/fx)	enteritis/obstruction			
Colon*	<20	25 (5 Gy/fx)	38 (7.6 Gy/fx)	colitis/fistula			
Rectum*	<20	25 (5 Gy/fx)	38 (7.6 Gy/fx)	proctitis/fistula			
Bladder wall	<15	18.3 (3.65 Gy/fx)	38 (7.6 Gy/fx)	cystitis/fistula			
Penile bulb	<3	30 (6 Gy/fx)	50 (10 Gy/fx)	Impotence			
Femoral heads (right and left)	<10	30 (6 Gy/fx)		Necrosis			
Renal hilum/vascular trunk	<2/3 volume	23 (4.6 Gy/fx)		Malignant hypertension			
Parallel Tissue C	ritical Volume (n	nL) Critical Volu	ume Dose Max (Gy)	Endpoint (≥Grade 3)			
Lung (right and left)	1,500	12.	5 (2.5 Gy/fx)	Basic lung function			
Lung (right and left)	1000	13.5	5 (2.7 Gy/fx)	Pneumonitis			
Liver	700	2	1 (4.2 Gy/fx)	Basic liver function			
Renal cortex (right and left)	200	17.	5 (3.5 Gy/fx)	Basic renal function			
*Avoid circumferential irradiation.							

Dose Calculation Algorithms : Impact on Txt. Planning and Validation

Depth dose, 6 MV

Problems with algorithms that do not model electron transport.
Electronic equilibrium? No problem.
Better agreement between Pinnacle CC and Monte Carlo than between Eclipse AAA and Monte Carlo.

Chopra et al.

Dual Lung Target (30 x 30 mm)

Challenging Cases - 1

Patient had 3D treatment for lung target 2 years ago and recurred. Prev Cord dose = 49 Gy, deliver minimum dose to cord Beam arranged to not enter thru cord, exit only Cord as OAR in optimization

Challenging Case - 2

- Patient with LUL lesion. Significant left lung obstruction.
- Opened up after three fx. Re-planning required. Significant (~10%) change in PTV dose.
- Will impact MU validation as well as 2nd check are insensitive to density corrections.

Challenging Case - 2

Future Directions

PTV Rx: 55Gy in 5 fx

ProKnow

Scoring powered by PlanIQ[™] Sun Nuclear Corporation

METRIC	RESULT	MIN REQ		IDEAL		POINTS	WEIGHT
Dose (Gy) covering 98 (%) of the PTV	54.534	52.25		^{21p} 55 ^p 55		17.44	21.00
Dose (Gy) covering whole PTV minus 0.03 (cc)	51.591	49.5	₹ 49.5	^{10p} 55		6.90	10.00
Conformation Number [52.25 (Gy), PTV]	0.859	0.75		^{12p} 0.95 0.95		6.54	12.00
Conformality Index [27.5 (Gy), PTV]	3.929	5	⊘ §°	^{12p} ₄		12.00	12.00
Homogeneity Index [55 (Gy), PTV]	0.147						
Minimum dose (Gy) to the ITV	56.856	52.25		^{10p} 55		10.00	10.00
Structure(s) containing the global max dose point	(3 values)	PTV	2	ITV		10.00	10.00
Volume (cc) of the HEART covered by 10 (Gy)	0.416	10	🏹 18	^{5p} 0		4.79	5.00
Dose (Gy) covering 0.03 (cc) of the PRVSPINALCANAL	9.071	20	🏹 2 8	⁵ P _{7.5} 7.5		4.37	5.00
Dose (Gy) covering 0.03 (cc) of the TRACHEA	8.245	40	2 8	58 10		5.00	5.00
Volume (%) of the LUNG_MINUS_ITV covered by 20 (Gy)	11.366	15	🏹 îg	^{10p} ₅ 5		6.82	10.00
Volume (%) of the LUNG_MINUS_ITV covered by 5 (Gy)	23.988	30	₹ 3.5p 30	78 10		4.55	7.00
Mean dose (Gy) to the LUNG_MINUS_ITV	6.288	10	🏹 1 8	5 ⁵⁹ 5		3.71	5.00
Volume (%) of the RLUNG covered by 5 (Gy)	1.409	30	S 8	5p 0		4.77	5.00
Volume (cc) of the THORACICWALL covered by 30 (Gy)	0.000	10	🏹 1 8	5p 0		5.00	5.00
Dose (Gy) covering 4 (cc) of the ESOPHAGUS	8.874	32.5	₩ ⁰ 2.5	58 10		5.00	5.00
Dose (Gy) covering 0.03 (cc) of the ESOPHAGUS	12.320	40	2 8	⁵⁸ / ₁₈ 10		4.61	5.00
Dose (Gy) covering 0.03 (cc) of the VESSELS	51.993	57.75	₹ 57.75	<u>58</u> 50		3.71	5.00
Dose (Gy) covering 4 (cc) of the PBT	26.655	50	S 8	58 28 20		3.89	5.00
Dose (Gy) covering 1.5 (cc) of the PBT	43.208	55	SB	⁵ 840		3.93	5.00
Dose (Gy) covering 0.03 (cc) of the SKIN	16.462	30	√ 1.5p 30	³ 2 10		2.52	3.00

Stereotactic body radiation therapy: The report of AAPM Task Group 101

Stanley H. Benedict, Chairman^{a)} University of Virginia Health System, Charlottesville, Virginia 22908

Accelerator beam data commissioning equipment and procedures: Report of the TG-106 of the Therapy Physics Committee of the AAPM

Indra J. Das^{a)}

Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104

Quality and safety considerations in stereotactic radiosurgery and stereotactic body radiation therapy: Executive summary

Timothy D. Solberg PhD^a,*, James M. Balter PhD^b, Stanley H. Benedict PhD^c, Benedick A. Fraass PhD^d, Brian Kavanagh MD^e, Curtis Miyamoto MD^f, Todd Pawlicki PhD^g, Louis Potters MD^h, Yoshiya Yamada MDⁱ

AAPM-RSS Medical Physics Practice Guideline 9.a. for SRS-SBRT

Per H. Halvorsen¹ | Eileen Cirino¹ | Indra J. Das² | Jeffrey A. Garrett³ | Jun Yang⁴ | Fang-Fang Yin⁵ | Lynne A. Fairobent⁶

RTOG 0813

SEAMLESS PHASE I/II STUDY OF STEREOTACTIC LUNG RADIOTHERAPY (SBRT) FOR EARLY STAGE, CENTRALLY LOCATED, NON-SMALL CELL LUNG CANCER (NSCLC) IN MEDICALLY INOPERABLE PATIENTS

RTOG 0915 (NCCTG N0927)

A RANDOMIZED PHASE II STUDY COMPARING 2 STEREOTACTIC BODY RADIATION THERAPY (SBRT) SCHEDULES FOR MEDICALLY INOPERABLE PATIENTS WITH STAGE I PERIPHERAL NON-SMALL CELL LUNG CANCER

RTOG 0236

A Phase II Trial of Stereotactic Body Radiation Therapy (SBRT) in the Treatment of Patients with Medically Inoperable Stage I/II Non-Small Cell Lung Cancer

Summary

- Ensure adequate resources are available for:
 - Imaging,
 - Txt Planning and
 - Delivery
- Acceptance Testing/Commissioning
- Robust System QA (End-to-End Test)
- IMRT/VMAT QA

Summary

- Checklists + Independent MU calc
- Follow RTOG Guidelines
- Establish site specific protocols consistent with departmental resources
- Automate Planning and Evaluation methods for efficient and consistent planning
- Follow AAPM/ASTRO/RTOG guidelines

SAM_Q4

For lung SBRT of small targets, independent checks of TPS calculated monitor units (MUs)

A. Should never be done because they never agree with TPS

- B. Will always produce same MUs as TPS because both account for heterogeneity corrections
- C. Will produce lower MUs than TPS because independent calculations fail to account for reduced scatter conditions in TPS
- D. Will produce higher MUs because scatter is missing in independent calculations
- E. Will produce higher MUs because independent calculations are 2D and TPS is 3D.

SAM_Q4

For lung SBRT of small targets, independent checks of TPS calculated monitor units (MUs)

A. Should never be done because they never agree with TPS

B. Will always produce same MUs as TPS because both account for heterogeneity corrections

C. Will produce lower MUs than TPS because independent calculations fail to account for reduced scatter conditions in TPS

- D. Will produce higher MUs because scatter is missing in independent calculations
- E. Will produce higher MUs because independent calculations are 2D and TPS is 3D.

Reference: Benedict et al, Task Group 101, Med Phys 37, 4078 (2010)

According to RTOG 0813 guidelines, the ratio of 50% isodose volume to planning target volume (PTV) should ______ with increasing PTV size

- A. Increase
- B. Decrease
- C. Stay the same

According to RTOG 0813 guidelines, the ratio of 50% isodose volume to planning target volume (PTV) should ______ with increasing PTV size

Reference: RTOG-0813 - Seamless Phase I/II Study of Stereotactic Lung Radiotherapy (SBRT) for Early Stage, Centrally Located, Non-Small Cell Lung Cancer (NSCLC) in Medically Inoperable Patients

Thank you!